Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators
نویسندگان
چکیده
We characterize the validity of the Maximum Principle in bounded domains for fully nonlinear degenerate elliptic operators in terms of the sign of a suitably defined generalized principal eigenvalue. Here, the maximum principle refers to the property of non-positivity of viscosity subsolutions of the Dirichlet problem. The new notion of generalized principal eigenvalue that we introduce here allows us to deal with arbitrary type of degeneracy of the elliptic operators. We further discuss the relations between this notion and other natural generalizations of the classical notion of principal eigenvalue, some of which have been previously introduced for particular classes of operators. Résumé Nous caractérisons la validité du principe du maximum pour des opérateurs elliptiques complètement non-linéaires dégénérés au moyen du signe d’une valeur propre généralisée convenablement définie. Ici, le principe du maximum est entendu comme la propriété que les sous-solutions au sens viscosité du problème de Dirichlet sont négatives ou nulles. La notion nouvelle de valeur propre principale que nous introduisons ici permet de traiter un cadre très général incluant les opérateurs elliptiques avec dégénérescence arbitraire. Nous examinons les liens entre cette notion et d’autres extensions naturelles de la définition classique de valeur propre principale dont certaines ont été introduites précédemment pour des classes particulières d’opérateurs. MSC: 35P30, 35B50, 35J70. Key-words: Principal eigenvalue, maximum principle, degenerate elliptic equation, viscosity solution. Corresponding author: I. Capuzzo Dolcetta, e-mail address: [email protected] aEcole des Hautes Etudes en Sciences Sociales, CAMS, 190-198, av. de France, 75244 Paris, France bDipartimento di Matematica, Sapienza Università di Roma, piazzale A. Moro 3, 00185 Roma, Italy cDipartimento di Matematica, Università di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma, Italy. dDipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy
منابع مشابه
Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains
Using three different notions of generalized principal eigenvalue of linear second order elliptic operators in unbounded domains, we derive necessary and sufficient conditions for the validity of the maximum principle, as well as for the existence of positive eigenfunctions satisfying Dirichlet boundary conditions. Relations between these principal eigenvalues, their simplicity and several othe...
متن کاملA Perron-type Theorem on the Principal Eigenvalue of Nonsymmetric Elliptic Operators
We provide a proof for a Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators based on the strong maximum principle. This proof is modeled after a variational proof of Perron’s theorem for matrices with positive entries that does not appeal to Perron-Frobenius theory.
متن کاملOn the Spectral Properties of Degenerate Non-selfadjoint Elliptic systems of Differential Operators
متن کامل
On the Strong Maximum Principle for Fully Nonlinear Degenerate Elliptic Equations
We prove a strong maximum principle for semicontinuous viscosity subsolutions or supersolutions of fully nonlinear degenerate elliptic PDE's, which complements the results of 17]. Our assumptions and conclusions are diierent from those in 17], in particular our maximum principle implies the nonexistence of a dead core. We test the assumptions on several examples involving the p-Laplacian and th...
متن کاملOn Cooperative Elliptic Systems: Principal Eigenvalue and Characterization of the Maximum Principle
The purpose of this set of notes is to present the connection between the classical maximum principle with the principal eigenvalue of the elliptic operator. We will start with the maximum principle for single equations and proceed to the case of cooperative (or weakly-coupled) systems. By adopting an idea due to G. Sweers, we give a characterization of the principal eigenvalue for a cooperativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014